If A, B, C are finite sets, and U be the finite universal set, then
i) n(A U B)=n(A)+n(B) - n(A ∩ B)
ii) n(A U B)=n(A)+n(B) <=> A,B are disjoint non-void sets.
iii) n(A-B)= n(A)- n(A ∩ B)
iv) n(A ∆ B)= Number of elements which belongs to exactly of A or B
= n(A)+n(B)- 2n(A ∩ B)
v) n(A U B U C)=n(A)+n(B)+n(C)-n(A ∩ B)-n(B ∩ C)-n(C ∩ A)+ n(A ∩ B ∩ C)
vi) Number of elements in exactly two of the sets A, B, C
= n(A ∩ B) + n(B ∩ C) + n(C ∩ A)- 3n(A ∩ B ∩ C)
vii) Number of elements in exactly one of the sets A, B, C
= n(A)+n(B)+n(C)- 2n(A ∩ B) - 2n(B ∩ C) - 2n(C ∩ A) + 3n(A ∩ B ∩ C)
viii) n(A′ U B′)= n((A ∩ B)′)=n(U)-n(A ∩ B)
ix) n(A′ ∩ B′)= n((A U B)′)=n(U)-n(A U B)
i) n(A U B)=n(A)+n(B) - n(A ∩ B)
ii) n(A U B)=n(A)+n(B) <=> A,B are disjoint non-void sets.
iii) n(A-B)= n(A)- n(A ∩ B)
iv) n(A ∆ B)= Number of elements which belongs to exactly of A or B
= n(A)+n(B)- 2n(A ∩ B)
v) n(A U B U C)=n(A)+n(B)+n(C)-n(A ∩ B)-n(B ∩ C)-n(C ∩ A)+ n(A ∩ B ∩ C)
vi) Number of elements in exactly two of the sets A, B, C
= n(A ∩ B) + n(B ∩ C) + n(C ∩ A)- 3n(A ∩ B ∩ C)
vii) Number of elements in exactly one of the sets A, B, C
= n(A)+n(B)+n(C)- 2n(A ∩ B) - 2n(B ∩ C) - 2n(C ∩ A) + 3n(A ∩ B ∩ C)
viii) n(A′ U B′)= n((A ∩ B)′)=n(U)-n(A ∩ B)
ix) n(A′ ∩ B′)= n((A U B)′)=n(U)-n(A U B)
No comments:
Post a Comment